32 research outputs found

    Examining individual differences in language learning: A neurocognitive model of language aptitude

    Get PDF
    A common practice in the cognitive neurosciences is to investigate population-typical phenomena, treating individuals as equal except for a few outliers that are usually discarded from analyses or that disappear on group-level patterns. Only a few studies to date have captured the heterogeneity of language processing across individuals as so-called “individual differences”; fewer have explicitly researched language aptitude, which designates an individual’s ability for acquiring foreign languages. Existing studies show that, relative to average learners, very gifted language learners display different task-related patterns of functional activation and connectivity during linguistic tasks, and structural differences in white and grey matter morphology, and in white matter connectivity. Despite growing interest in language aptitude, there is no recent comprehensive review, nor a theoretical model to date that includes the neural level. To fill this gap, we review neuroscientific research on individual differences in language learning and language aptitude and present a first, preliminary neurocognitive model of language aptitude. We suggest that language aptitude could arise from an advantageous neurocognitive profile, which leads to high intrinsic motivation and proactive engagement in language learning activities. On the neural level, interindividual differences in the morphology of the bilateral auditory cortex constrain individual neural plasticity, as is evident in the speed and efficiency of language learning. We suggest that language learning success is further dependent upon highly efficient auditory-motor connections (speech-motor networks) and the structural characteristics of dorsal and ventral fibre tracts during language learning

    Short-term plasticity of neuro-auditory processing induced by musical active listening training

    Get PDF
    Although there is strong evidence for the positive effects of musical training on auditory perception, processing, and training-induced neuroplasticity, there is still little knowledge on the auditory and neurophysiological short-term plasticity through listening training. In a sample of 37 adolescents (20 musicians and 17 nonmusicians) that was compared to a control group matched for age, gender, and musical experience, we conducted a 2-week active listening training (AULOS: Active IndividUalized Listening OptimizationS). Using magnetoencephalography and psychoacoustic tests, the short-term plasticity of auditory evoked fields and auditory skills were examined in a pre-post design, adapted to the individual neuro-auditory profiles. We found bilateral, but more pronounced plastic changes in the right auditory cortex. Moreover, we observed synchronization of the auditory evoked P1, N1, and P2 responses and threefold larger amplitudes of the late P2 response, similar to the reported effects of musical long-term training. Auditory skills and thresholds benefited largely from the AULOS training. Remarkably, after training, the mean thresholds improved by 12 dB for bone conduction and by 3–4 dB for air conduction. Thus, our findings indicate a strong positive influence of active listening training on neural auditory processing and perception in adolescence, when the auditory system is still developing

    The human 'pitch center' responds differently to iterated noise and Huggins pitch

    Get PDF
    A magnetoencephalographic marker for pitch analysis (the pitch onset response) has been reported for different types of pitch-evoking stimuli, irrespective of whether the acoustic cues for pitch are monaurally or binaurally produced. It is claimed that the pitch onset response reflects a common cortical representation for pitch, putatively in lateral Heschl's gyrus. The result of this functional MRI study sheds doubt on this assertion. We report a direct comparison between iterated ripple noise and Huggins pitch in which we reveal a different pattern of auditory cortical activation associated with each pitch stimulus, even when individual variability in structure-function relations is accounted for. Our results suggest it may be premature to assume that lateral Heschl's gyrus is a universal pitch center

    Sensitivity of the human auditory cortex to acoustic degradation of speech and non-speech sounds

    Get PDF
    The perception of speech is usually an effortless and reliable process even in highly adverse listening conditions. In addition to external sound sources, the intelligibility of speech can be reduced by degradation of the structure of speech signal itself, for example by digital compression of sound. This kind of distortion may be even more detrimental to speech intelligibility than external distortion, given that the auditory system will not be able to utilize sound source-specific acoustic features, such as spatial location, to separate the distortion from the speech signal. The perceptual consequences of acoustic distortions on speech intelligibility have been extensively studied. However, the cortical mechanisms of speech perception in adverse listening conditions are not well known at present, particularly in situations where the speech signal itself is distorted. The aim of this thesis was to investigate the cortical mechanisms underlying speech perception in conditions where speech is less intelligible due to external distortion or as a result of digital compression. In the studies of this thesis, the intelligibility of speech was varied either by digital compression or addition of stochastic noise. Cortical activity related to the speech stimuli was measured using magnetoencephalography (MEG). The results indicated that degradation of speech sounds by digital compression enhanced the evoked responses originating from the auditory cortex, whereas addition of stochastic noise did not modulate the cortical responses. Furthermore, it was shown that if the distortion was presented continuously in the background, the transient activity of auditory cortex was delayed. On the perceptual level, digital compression reduced the comprehensibility of speech more than additive stochastic noise. In addition, it was also demonstrated that prior knowledge of speech content enhanced the intelligibility of distorted speech substantially, and this perceptual change was associated with an increase in cortical activity within several regions adjacent to auditory cortex. In conclusion, the results of this thesis show that the auditory cortex is very sensitive to the acoustic features of the distortion, while at later processing stages, several cortical areas reflect the intelligibility of speech. These findings suggest that the auditory system rapidly adapts to the variability of the auditory environment, and can efficiently utilize previous knowledge of speech content in deciphering acoustically degraded speech signals.Puheen havaitseminen on useimmiten vaivatonta ja luotettavaa myös erittäin huonoissa kuunteluolosuhteissa. Puheen ymmärrettävyys voi kuitenkin heikentyä ympäristön häiriölähteiden lisäksi myös silloin, kun puhesignaalin rakennetta muutetaan esimerkiksi pakkaamalla digitaalista ääntä. Tällainen häiriö voi heikentää ymmärrettävyyttä jopa ulkoisia häiriöitä voimakkaammin, koska kuulojärjestelmä ei pysty hyödyntämään äänilähteen ominaisuuksia, kuten äänen tulosuuntaa, häiriön erottelemisessa puheesta. Akustisten häiriöiden vaikutuksia puheen havaitsemiseen on tutkttu laajalti, mutta havaitsemiseen liittyvät aivomekanismit tunnetaan edelleen melko puutteelisesti etenkin tilanteissa, joissa itse puhesignaali on laadultaan heikentynyt. Tämän väitöskirjan tavoitteena oli tutkia puheen havaitsemisen aivomekanismeja tilanteissa, joissa puhesignaali on vaikeammin ymmärrettävissä joko ulkoisen äänilähteen tai digitaalisen pakkauksen vuoksi. Väitöskirjan neljässä osatutkimuksessa lyhyiden puheäänien ja jatkuvan puheen ymmärrettävyyttä muokattiin joko digitaalisen pakkauksen kautta tai lisäämällä puhesignaaliin satunnaiskohinaa. Puheärsykkeisiin liittyvää aivotoimintaa tutkittiin magnetoenkefalografia-mittauksilla. Tutkimuksissa havaittiin, että kuuloaivokuorella syntyneet herätevasteet voimistuivat, kun puheääntä pakattiin digitaalisesti. Sen sijaan puheääniin lisätty satunnaiskohina ei vaikuttanut herätevasteisiin. Edelleen, mikäli puheäänien taustalla esitettiin jatkuvaa häiriötä, kuuloaivokuoren aktivoituminen viivästyi häiriön intensiteetin kasvaessa. Kuuntelukokeissa havaittiin, että digitaalinen pakkaus heikentää puheäänien ymmärrettävyyttä voimakkaammin kuin satunnaiskohina. Lisäksi osoitettiin, että aiempi tieto puheen sisällöstä paransi merkittävästi häiriöisen puheen ymmärrettävyyttä, mikä heijastui aivotoimintaan kuuloaivokuoren viereisillä aivoalueilla siten, että ymmärrettävä puhe aiheutti suuremman aktivaation kuin heikosti ymmärrettävä puhe. Väitöskirjan tulokset osoittavat, että kuuloaivokuori on erittäin herkkä puheäänien akustisille häiriöille, ja myöhemmissä prosessoinnin vaiheissa useat kuuloaivokuoren viereiset aivoalueet heijastavat puheen ymmärrettävyyttä. Tulosten mukaan voi olettaa, että kuulojärjestelmä mukautuu nopeasti ääniympäristön vaihteluihin muun muassa hyödyntämällä aiempaa tietoa puheen sisällöstä tulkitessaan häiriöistä puhesignaalia

    Insights on the Neuromagnetic Representation of Temporal Asymmetry in Human Auditory Cortex.

    Get PDF
    Communication sounds are typically asymmetric in time and human listeners are highly sensitive to this short-term temporal asymmetry. Nevertheless, causal neurophysiological correlates of auditory perceptual asymmetry remain largely elusive to our current analyses and models. Auditory modelling and animal electrophysiological recordings suggest that perceptual asymmetry results from the presence of multiple time scales of temporal integration, central to the auditory periphery. To test this hypothesis we recorded auditory evoked fields (AEF) elicited by asymmetric sounds in humans. We found a strong correlation between perceived tonal salience of ramped and damped sinusoids and the AEFs, as quantified by the amplitude of the N100m dynamics. The N100m amplitude increased with stimulus half-life time, showing a maximum difference between the ramped and damped stimulus for a modulation half-life time of 4 ms which is greatly reduced at 0.5 ms and 32 ms. This behaviour of the N100m closely parallels psychophysical data in a manner that: i) longer half-life times are associated with a stronger tonal percept, and ii) perceptual differences between damped and ramped are maximal at 4 ms half-life time. Interestingly, differences in evoked fields were significantly stronger in the right hemisphere, indicating some degree of hemispheric specialisation. Furthermore, the N100m magnitude was successfully explained by a pitch perception model using multiple scales of temporal integration of auditory nerve activity patterns. This striking correlation between AEFs, perception, and model predictions suggests that the physiological mechanisms involved in the processing of pitch evoked by temporal asymmetric sounds are reflected in the N100m

    Auditory temporal processing in healthy aging: a magnetoencephalographic study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Impaired speech perception is one of the major sequelae of aging. In addition to peripheral hearing loss, central deficits of auditory processing are supposed to contribute to the deterioration of speech perception in older individuals. To test the hypothesis that auditory temporal processing is compromised in aging, auditory evoked magnetic fields were recorded during stimulation with sequences of 4 rapidly recurring speech sounds in 28 healthy individuals aged 20 – 78 years.</p> <p>Results</p> <p>The decrement of the N1m amplitude during rapid auditory stimulation was not significantly different between older and younger adults. The amplitudes of the middle-latency P1m wave and of the long-latency N1m, however, were significantly larger in older than in younger participants.</p> <p>Conclusion</p> <p>The results of the present study do not provide evidence for the hypothesis that auditory temporal processing, as measured by the decrement (short-term habituation) of the major auditory evoked component, the N1m wave, is impaired in aging. The differences between these magnetoencephalographic findings and previously published behavioral data might be explained by differences in the experimental setting between the present study and previous behavioral studies, in terms of speech rate, attention, and masking noise. Significantly larger amplitudes of the P1m and N1m waves suggest that the cortical processing of individual sounds differs between younger and older individuals. This result adds to the growing evidence that brain functions, such as sensory processing, motor control and cognitive processing, can change during healthy aging, presumably due to experience-dependent neuroplastic mechanisms.</p

    Interaction between the neuromagnetic responses to sound energy onset and pitch onset suggests common generators

    No full text
    The pitch-onset response (POR) is a negative component of the auditory evoked field which is elicited when the temporal fine structure of a continuous noise is regularized to produce a pitch perception without altering the gross spectral characteristics of the sound. Previously, we showed that the latency of the POR is inversely related to the pitch value and its amplitude is correlated with the salience of the pitch, suggesting that the underlying generators are part of a pitch-processing network [Krumbholz, K., Patterson, R.D., Seither-Preisler, A., Lammertmann, C. & Lütkenhöner, B. (2003) Cereb. Cortex,13, 765-772]. The source of the POR was located near the medial part of Heschl's gyrus. The present study was designed to determine whether the POR originates from the same generators as the energy-onset response (EOR) represented by the N100m/P200m complex. The EOR to the onset of a noise, and the POR to a subsequent transition from noise to pitch, were recorded as the time interval between the noise onset and the transition varied from 500 to 4000 ms. The mean amplitude of the POR increased by approximately 5.9 nA.m with each doubling of the time between noise onset and transition. This suggests an interaction between the POR and the EOR, which may be based on common neural generators

    Sensitivity of the neuromagnetic N100m deflection to spectral bandwidth: A function of the auditory periphery?

    No full text
    Photodynamic therapy (PDT) has become a well-established treatment for vascular forms of age-related macular degeneration (AMD). The implementation of evidence-based medicine principles into the treatment regimen of AMD seems to be immensly important, since AMD continues to be the most frequent cause of blindness among patients older than 65 years in industrialized countries. Numerous randomized prospective studies demonstrated high levels of evidence for the efficacy of various treatment approaches such as laser photocoagulation, PDT, subretinal surgery or novel anti-angiogenic drugs [Arch Ophthalmol 2006;124:597-599]. The high evidence shown by these studies supported the rationale to use PDT also in additional, less frequent, vasoproliferative diseases. Although these 'case series' and 'individual case control studies' have a low level of evidence, they give us important information for treatment decisions in these rare conditions. The goal of this survey is to review the current literature regarding PDT in vasoproliferative and exudative ocular diseases outside AMD. Many studies modified the treatment parameters of PDT to address the specific pathology of the underlying disease. Table 1 summarizes the diseases and treatment parameters that are described in this part 2, the entire table of this review is included in part 1 (www.karger.com/doi/10.1159/ 000101922)
    corecore